
kindred Documentation
Release =2.8.3

Jake Lever

Mar 12, 2023

Contents

1 File Formats 1
1.1 BioNLP Shared Task format . 1
1.2 JSON format . 2
1.3 BioC XML format . 2
1.4 Simple Tag format . 3
1.5 Streaming . 4

2 Overview 5

3 Installation 7
3.1 Installing a Spacy language model . 7

4 Tutorial with a mini annotation problem 9

5 Getting started with code 11

6 Specific Examples 13
6.1 Loading data from files . 13
6.2 Loading data from online resources . 13
6.3 Parsing . 14
6.4 Candidate Building . 14
6.5 Vectorizing . 14

7 Frequently Asked Questions 17

8 Release Notes 19

9 Version 2.8.0 21

10 Version 2.7.0 23

11 Version 2.6.0 25

12 Version 2.5.0 27

13 Version 2.4.0 29

14 Version 2.3.0 31

i

15 Version 2.2.0 33

16 Version 2.1.0 35

17 Version 2.0.0 37
17.1 Version 1.1.0 . 37
17.2 Version 1.0.0 . 37

18 Citing 39

19 Reference 41
19.1 Main components . 41
19.2 Data types . 46
19.3 Machine Learning Components . 52
19.4 Data sources . 54
19.5 Essential functions . 55

Python Module Index 59

Index 61

ii

CHAPTER 1

File Formats

Kindred can load several different file formats that contain text and their annotations. Below are examples of the
different file formats with code for loading them.

1.1 BioNLP Shared Task format

This format, used in BioNLP Shared Tasks, is a standoff format. This means that the text is stored in one file and the
annotations in other files. The text is stored in the .txt file, the entity annotations in the .a1 file and the relations in the
.a2 file. For a project, you may have a directory with many .txt files, perhaps one per document or one per sentence.
Then each file has its corresponding annotation files. If no relations annotations exist, the .a2 file may be missing.

Example file: example.txt

The colorectal cancer was caused by mutations in APC

Example file: example.a1

T1 disease 4 21 colorectal cancer
T2 gene 49 52 APC

Example file: example.a2

E1 causes subj:T2 obj:T1

The .txt file contains Unicode text and no annotations. The .a1 file contains entity annotations. Each line is a new
annotation and contains three tab-delimited columns. The first column is the unique identifier which is a T with a
number. The second column contains the entity type, start and end position in the text with spaces in between. And
the third column has a copy of the text for this entity. The .a2 file contains the relation annotations and contains
tab-delimited columns. The first column is a unique identifier of the relation. The second column is the relation type
and then the arguments of the relation, in the form of name:entityid. The entity identifier corresponds to the identifier
in the .a1 file. Kindred supports relations with two or more arguments in the relation.

The identifiers for an entity annotation (in the .a1 file) must start with a T. The T stands for trigger. The identifiers for
a relation annotation (in the .a2 file) must start with an E or R. For Kindred, these are synonymous. Note, that Kindred

1

http://www.bionlp-st.org/

kindred Documentation, Release =2.8.3

doesn’t support “complex” relations, which are relations where one of the arguments is another relation. All relations
must be between entities.

The following code would load these files to create a kindred.Corpus with a single document.

corpus = kindred.load('standoff','example.txt')

Perhaps more useful, to load a whole corpus with multiple files in the format, use the following code assuming that
the files are in the example directory. This will create a kindred.Corpus object.

corpus = kindred.load('standoff','example')

1.2 JSON format

This format, used by PubAnnotation and PubTator, stores the text and annotation data all together in a single file.
Furthermore, multiple documents can be stored in a single document.

The format is standard JSON and is either a dictionary (for a single document) or a list of dictionaries (for multiple
documents). Each dictionary needs to have three fields: text, denotations, and relations. The text is the text of the
document. The denotations are the entity annotations and provide the unique identifier, entity type and location (span)
in the text. The relations are the relation annotations.

Example file: example.json

{
"text": "The colorectal cancer was caused by mutations in APC",
"denotations":
[{"id":"T1", "obj":"disease",
"span":{"begin":4,"end":21}},

{"id":"T2", "obj":"gene",
"span":{"begin":49,"end":52}}],

"relations":
[{"id":"R1","pred":"causes",
"subj":"T2", "obj":"T1"}]

}

To load a whole corpus with multiple files in the format, use the following code assuming that the files are in the
example directory. This will create a kindred.Corpus object.

corpus = kindred.load('json','example')

1.3 BioC XML format

The BioC XML format contains text and annotations together in a single file. Furthermore, it is designed to store more
than one document. It stores each document as “document” within a larger “collection”. Each document contains
passages (e.g. sections of a paper) which then contain the text, entity annotations, and relations. In loading this, each
passage is turned into a single kindred.Document. An example of the format is outlined below.

<?xml version='1.0' encoding='UTF-8'?><!DOCTYPE collection SYSTEM 'BioC.dtd'>
<collection>

<source></source>
<date></date>
<key></key>

(continues on next page)

2 Chapter 1. File Formats

http://pubannotation.org/
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/

kindred Documentation, Release =2.8.3

(continued from previous page)

<document>
<id></id>
<passage>

<offset>0</offset>
<text>The colorectal cancer was caused by mutations in APC</text>
<annotation id="T1">
<infon key="type">disease</infon>
<location offset="4" length="17"/>
<text>colorectal cancer</text>

</annotation>
<annotation id="T2">
<infon key="type">gene</infon>
<location offset="49" length="3"/>
<text>APC</text>

</annotation>
<relation id="R1">
<infon key="type">causes</infon>
<node refid="T2" role="subj"/>
<node refid="T1" role="obj"/>

</relation>
</passage>

</document>
</collection>

To load a whole directory of BioC XML files, use the code below. This will create a single kindred.Corpus file
with each passage found in all XML files in the directory turned a kindred.Document entity.

corpus = kindred.load('bioc','example')

1.4 Simple Tag format

This format is not designed for production-use but for illustration and testing purposes. It is Kindred-specific. It is an
XML-based format that keeps all annotations inline, to make it easier to see which entities are annotated. A relation tag
provides a relation annotation and must have a type attribute. All other attributes are assumed to be relation argument.
Any non-relation tag is assumed to be an entity annotation and must wrap around text. It must also have an id attribute.

Example file: example.simple

The <disease id="T1">colorectal cancer</disease> was caused by mutations in <gene id=
→˓"T2">APC</gene>
<relation type="causes" subj="T2" obj="T1" />

It is most useful for quickly creating examples for testing. For example, the code below creates a kindred.Corpus
with a single document of the associated text and annotations.

text = '<drug id="1">Erlotinib</drug> is a common treatment for <cancer id="2">NSCLC</
→˓cancer>. <drug id="3">Aspirin</drug> is the main cause of <disease id="4">boneitis</
→˓disease>. <relation type="treats" subj="1" obj="2" />'

corpus = kindred.Corpus(text,loadFromSimpleTag=True)

If you do need to load a directory of these files (with suffix: .simple), the following command will load them into a
kindred.Corpus file.

1.4. Simple Tag format 3

kindred Documentation, Release =2.8.3

corpus = kindred.load('simpletag','example')

1.5 Streaming

Some corpora are too large to load into memory in a single go. Kindred supports streaming in chunks of a corpus in
the BioC format. The code below uses an iterator to load smaller kindred.Corpus objects that contain a subset of
the documents each time.

for corpus in kindred.iterLoad('example.bioc.xml',corpusSizeCutoff=3):
pass

4 Chapter 1. File Formats

CHAPTER 2

Overview

Kindred is a Python package specifically designed for binary relation extraction from biomedical texts (e.g. PubMed
abstracts). It takes a supervised learning approach, and therefore requires training data in order to build a model.

Kindred can do simple dictionary-based entity extraction. It also has integration with Pubtator to automatically pull
out PubMed abstracts with a number of entities tagged and with PubAnnotation and can easily load annotation data.

5

kindred Documentation, Release =2.8.3

6 Chapter 2. Overview

CHAPTER 3

Installation

Kindred is distributed through PyPI. Hence you should be able to install it with the shell command below.

pip install kindred

If you need to upgrade to a newer release, use the following shell command.

pip install --upgrade kindred

And if you want to install directly from source, use this shell command.

python setup.py install

Once it is installed, Kindred can be imported in Python with:

>>> import kindred

3.1 Installing a Spacy language model

As of v2, Kindred uses the Spacy python package for parsing. A language model needs to be installed for the corre-
sponding language using a command similar to below.

python -m spacy download en_core_web_sm

7

kindred Documentation, Release =2.8.3

8 Chapter 3. Installation

CHAPTER 4

Tutorial with a mini annotation problem

There is a tutorial with sample code that steps through a small annotation task for extracting capital cities from text.
It’s on Github and may give you an understanding of the annotations that Kindred needs and how you might go about
getting them. Once you’ve understood the input data, you might want to dive more into the code and the below
examples will give you some ideas.

9

https://github.com/jakelever/kindred/tree/master/tutorial
https://github.com/jakelever/kindred/tree/master/tutorial

kindred Documentation, Release =2.8.3

10 Chapter 4. Tutorial with a mini annotation problem

CHAPTER 5

Getting started with code

Let’s walk through a basic example for the BioNLP Shared Task. This will involve loading a corpus of data to train a
classifier and a corpus to make predictions on and for evaluation. We will then train the classifier, make the predictions
and evaluate how we did. The smaller steps (parsing, candidate building & vectorizing) are done behind the scenes.

First, we need to load the data. We want the training and development corpus and use the commands below

>>> trainCorpus = kindred.bionlpst.load('2016-SeeDev-binary-train')
>>> devCorpus = kindred.bionlpst.load('2016-SeeDev-binary-dev')

We’re going to build a model for the relations in the training corpus and make predictions on the development corpus.
We are going to keep the devCorpus object to make comparisons against, but need a copy of it that doesn’t have any
relations attached to it. Hence we will clone it and remove the relations. This will contain all the same text and entity
annotations as the devCorpus, but no relations.

>>> predictionCorpus = devCorpus.clone()
>>> predictionCorpus.removeRelations()

Now we’re going to build the model on the training data with default settings.

>>> classifier = kindred.RelationClassifier()
>>> classifier.train(trainCorpus)

Now we will use this classifier to predict relations in the predictionCorpus object. These new relations will be added
to the corpus.

>>> classifier.predict(predictionCorpus)

Lastly, we will evaluate how well we have done. The common measure is F1-score.

>>> f1score = kindred.evaluate(devCorpus, predictionCorpus, metric='f1score')

11

kindred Documentation, Release =2.8.3

12 Chapter 5. Getting started with code

CHAPTER 6

Specific Examples

Here we will show some of the individual steps that might be needed.

6.1 Loading data from files

To load a corpus from a directory, you can use the load function, providing the format of the data.

>>> corpus = kindred.load('biocxml','/home/user/data/')

And if it was in another format, you change the dataFormat parameter. Options include: ‘standoff’ for the standoff
format used in the BioNLP Shared Tasks, ‘biocxml’ for BioC XML files and ‘simpletag’ if there are a set of SimpleTag
XML files. Note that we only use SimpleTag for generating easy test data and not for any large problems.

6.2 Loading data from online resources

Kindred integrates with several online resources to make it easy to import data. For BioNLP Shared Tasks, you can
use the command below:

>>> corpus = kindred.bionlpst.load('2016-SeeDev-binary-train')

You can currently import data from the ‘2016-SeeDev-binary’ shared tasks as the files for ‘2016-BB3-event’ are no
longer available. Add ‘train’, ‘dev’ or ‘test’ to them. The ‘train’ and ‘dev’ corpora contain relations while the ‘test’
corpus does not.

You can import PubMed abstracts annotated by Pubtator with a list of PubMed IDs (or PMIDs for short). These will
contain entity annotations but no relations. The command below will import the two articles with those PMIDs.

>>> corpus = kindred.pubtator.load([19894120,19894121])

13

kindred Documentation, Release =2.8.3

You can also import text and annotation data from PubAnnotation. In this case, you provide the project name and
Kindred will download all the annotations and associated text. For the ‘bionlp-st-gro-2013-development’ project, the
command to import is below. These annotations may include relation information

>>> corpus = kindred.pubannotation.load('bionlp-st-gro-2013-development')

6.3 Parsing

If you want to parse a corpus, you use a Parser object.

>>> parser = kindred.Parser()
>>> parser.parse(corpus)

6.4 Candidate Building

Given a corpus with annotated entities, one may want to generate the set of all candidate relations between two entities
within the same text. One can do this for the first set with the command below. Each Sentence object within the corpus
will now have a set of candidate relations attached to it.

>>> candidateBuilder = kindred.CandidateBuilder()
>>> candidateBuilder.fit_transform(corpus)

You can easily extract all the candidate relations using the command below:

>>> candidateRelations = corpus.getCandidateRelations()

The corpus contains a list of relation types contained within.

>>> print(corpus.relationTypes)

And if the corpus contains annotated relations, the candidate relations will be assigned a non-zero class index. Hence
a candidate relation with class 0 has not been annotated, but a candidate relation with class 1 is of the first relation
type in corpus.relationTypes.

6.5 Vectorizing

You may want to generate vectors for each candidate relation. The command below will produce the vectorized matrix
with the default set of feature types.

>>> vectorizer = kindred.Vectorizer()
>>> trainMatrix = vectorizer.fit_transform(trainCorpus)

Once you’ve fit the vectorizer to the training set, remember to only use transform for the test set.

>>> testMatrix = vectorizer.transform(testCorpus)

Want to use only specific feature types (of which the options are: entityTypes, unigramsBetweenEntities, bigrams,
dependencyPathEdges, dependencyPathEdgesNearEntities)? Use a command like below:

14 Chapter 6. Specific Examples

kindred Documentation, Release =2.8.3

>>> vectorizer = kindred.Vectorizer(featureChoice=['entityTypes','bigrams'])

6.5. Vectorizing 15

kindred Documentation, Release =2.8.3

16 Chapter 6. Specific Examples

CHAPTER 7

Frequently Asked Questions

Does Kindred handle multiple relations that contain the same entities?

At the moment, no. Kindred will only use the first annotation of a relation.

17

kindred Documentation, Release =2.8.3

18 Chapter 7. Frequently Asked Questions

CHAPTER 8

Release Notes

19

kindred Documentation, Release =2.8.3

20 Chapter 8. Release Notes

CHAPTER 9

Version 2.8.0

• Updates for newer version of bioc library

• Dealing with BioNLP 2016 task files that are unavailable

21

kindred Documentation, Release =2.8.3

22 Chapter 9. Version 2.8.0

CHAPTER 10

Version 2.7.0

• Added support to save to PubAnnotation format

23

kindred Documentation, Release =2.8.3

24 Chapter 10. Version 2.7.0

CHAPTER 11

Version 2.6.0

• Release v2.6.1 is the final Python2 compatible version

• Added option for metadata associated with entities

• Added option to load any Spacy model for parsing

25

kindred Documentation, Release =2.8.3

26 Chapter 11. Version 2.6.0

CHAPTER 12

Version 2.5.0

• Added MultiLabelClassifier and changed behaviour when multiple relation types are present. They are now
predicted independently using separate classifiers. This allows overlapping relations (where the same entities
are part of multiple relations).

27

kindred Documentation, Release =2.8.3

28 Chapter 12. Version 2.5.0

CHAPTER 13

Version 2.4.0

• Updates to the loading and saving functionality so that everything is done through kindred.load or kindred.save

• Changed EntityRecognizer logic to use token boundaries and exact string matching instead of matching tok-
enization (for faster wordlist loading)

29

kindred Documentation, Release =2.8.3

30 Chapter 13. Version 2.4.0

CHAPTER 14

Version 2.3.0

• Add manuallyAnnotate for a simple mechanism to annotate candidate relations

• Add splitIntoSentences for a parsed corpus/document

31

kindred Documentation, Release =2.8.3

32 Chapter 14. Version 2.3.0

CHAPTER 15

Version 2.2.0

• Add CandidateRelation class to distinguish from Relation

• Reworking of API so that Candidate Relations are no longer stored in corpus. Changes across API that will
break backwards compatibility

• Fixes to PubTator input

33

kindred Documentation, Release =2.8.3

34 Chapter 15. Version 2.2.0

CHAPTER 16

Version 2.1.0

• Added EntityRecognizer for basic entity extraction

• Relations can now be n-ary, not just binary

35

kindred Documentation, Release =2.8.3

36 Chapter 16. Version 2.1.0

CHAPTER 17

Version 2.0.0

• Large overhaul to replace CoreNLP with Spacy package for easier integration and installation

• Simplified relation classifier functionality by removing feature building and multiclassifier options

• Add functionality for streaming BioC files

17.1 Version 1.1.0

• Upgraded to new version of Stanford CoreNLP (3.8.0) and added code to manage upgrade

• Changed dependency parsing to use standard CoreNLP dep parser (instead of constituency with a conversion).

• Changed evaluation function to not output specific details by default

• You can now parse with every language in CoreNLP (arabic,chinese,english,french,german,spanish)

• Improved error display for CoreNLP failures

17.2 Version 1.0.0

• Original release (corresponding to original paper)

37

kindred Documentation, Release =2.8.3

38 Chapter 17. Version 2.0.0

CHAPTER 18

Citing

If your work makes use of Kindred, it’d be really nice if you cited us.

@article{lever2017painless,
title={Painless {R}elation {E}xtraction with {K}indred},
author={Lever, Jake and Jones, Steven JM},
journal={Bio{NLP} 2017},
pages={176},
year={2017}
}

39

kindred Documentation, Release =2.8.3

40 Chapter 18. Citing

CHAPTER 19

Reference

19.1 Main components

EntityRecognizer Annotates entities in a Corpus using an exact-dictionary
matching scheme with additional heuristics.

CandidateBuilder Generates set of all possible relations in corpus.
Parser Runs Spacy on corpus to get sentences and associated

tokens
RelationClassifier Manages binary classifier(s) for relation classification.
Vectorizer Vectorizes set of candidate relations into scipy sparse

matrix.

19.1.1 kindred.EntityRecognizer

class kindred.EntityRecognizer(lookup, detectFusionGenes=False, detectMicroRNA=False,
acronymDetectionForAmbiguity=False, mergeTerms=False,
detectVariants=False, variantStopwords=None, detectPolymor-
phisms=False, removePathways=False)

Annotates entities in a Corpus using an exact-dictionary matching scheme with additional heuristics. These
heuristics include detecthing fusion gene mentions, microRNA, identifying acronyms to reduce ambiguity, iden-
tifying variants and more. All the options are parameters for the constructor of this class.

Variables

• lookup – Used for the dictionary matching. A dictionary of terms (tuple of parsed words)
to a list of (entityType,externalID).

• detectFusionGenes – Whether it will try to identify fusion gene terms (e.g. BCR-
ABL1). Lookup must contain terms of type ‘gene’

• detectMicroRNA – Whether it will identify microRNA terms (added as ‘gene’ entities)

• acronymDetectionForAmbiguity – Whether it will try to identify acronyms and

41

kindred Documentation, Release =2.8.3

use this to deal with ambiguity (by removing incorrect matches to acronyms or the longer
terms)

• mergeTerms – Whether it will merge neighbouring terms that refer to the same external
entity (e.g. HER2/neu as one term instead of two)

• detectVariants – Whether it will identify a variant (e.g. V600E) and create an entity
of type ‘variant’

• variantStopwords – Variant terms to be ignored (e.g. S100P) if detectVariants is used

• detectPolymorphisms – Whether it will identify a SNP (using a dbSNP ID) and create
an entity of type ‘variant’

• removePathways – Whether it will remove genes that are actually naming a signalling
pathway (e.g. MTOR pathway)

Methods

__init__(lookup, detectFusionGenes=False, detectMicroRNA=False, acronymDetectionForAmbigu-
ity=False, mergeTerms=False, detectVariants=False, variantStopwords=None, detectPoly-
morphisms=False, removePathways=False)

Create an EntityRecognizer and provide the lookup table for terms and additional flags for what to identify
in text

Parameters

• lookup (dict) – A dictionary of terms (tuple of parsed words) to a list of (entity-
Type,externalID).

• detectFusionGenes (bool) – Whether to try to identify fusion gene terms (e.g.
BCR-ABL1). Lookup must contain terms of type ‘gene’

• detectMicroRNA (bool) – Whether to identify microRNA terms (added as ‘gene’
entities)

• acronymDetectionForAmbiguity (bool) – Whether to try to identify acronyms
and use this to deal with ambiguity (by removing incorrect matches to acronyms or the
longer terms)

• mergeTerms (bool) – Whether to merge neighbouring terms that refer to the same
external entity (e.g. HER2/neu as one term instead of two)

• detectVariants (bool) – Whether to identify a variant (e.g. V600E) and create an
entity of type ‘variant’

• variantStopwords (list) – Variant terms to be ignored (e.g. S100P) if detectVari-
ants is used

• detectPolymorphisms (bool) – Whether to identify a SNP (using a dbSNP ID) and
create an entity of type ‘variant’

• removePathways (bool) – Remove genes that are actually naming a signalling path-
way (e.g. MTOR pathway)

annotate(corpus)
Annotate a parsed corpus with the wordlist lookup and other entity types

Parameters corpus (kindred.Corpus) – Corpus to annotate

static loadWordlists(entityTypesWithFilenames, idColumn=0, termsColumn=1, columnSepara-
tor=’\t’, termSeparator=’|’)

Load a wordlist from multiple files. By default, each file should be a tab-delimited file with the first

42 Chapter 19. Reference

kindred Documentation, Release =2.8.3

column is the ID and the second column containing all the terms separated by ‘|’. This can be modified by
the parameters.

As each term is parsed, this can take a long time. It is recommended to run this one time and save the
output as a Python pickle file and load in.

Parameters

• entityTypesWithFilenames (dict) – Dictionary of entityType => filename

• idColumn (int) – The column containing the ID for the term (starts from 0)

• termsColumn (int) – The column containing the list of terms (starts from 0)

• columnSeparator (str) – The column separator for the file (default is a tab)

• termSeparator (str) – The separator for the list of terms (default is a ‘|’)

Returns Dictionary of lookup values

Return type dict

19.1.2 kindred.CandidateBuilder

class kindred.CandidateBuilder(entityCount=2, acceptedEntityTypes=None)
Generates set of all possible relations in corpus.

Variables

• entityCount – Number of entities in each relation (default=2)

• acceptedEntityTypes – Tuples of entities that candidate relations must match. Each
entity should be the same length as entityCount. None will match all candidate relations.

Methods

__init__(entityCount=2, acceptedEntityTypes=None)
Constructor

Parameters

• entityCount (int) – Number of entities in each relation (default=2)

• acceptedEntityTypes (list of tuples) – Tuples of entities that candidate re-
lations must match. Each entity should be the same length as entityCount. None will
match all candidate relations.

build(corpus)
Creates the set of all possible relations that exist within the given corpus. Each relation will be contained
within a single sentence.

Parameters corpus (kindred.Corpus) – Corpus of text with which to build relation can-
didates

Returns List of candidate relations matching entityCount and acceptedEntityTypes

Return type List of kindred.Relation

19.1. Main components 43

kindred Documentation, Release =2.8.3

19.1.3 kindred.Parser

class kindred.Parser(model=’en_core_web_sm’)
Runs Spacy on corpus to get sentences and associated tokens

Variables

• model – Model for parsing (e.g. en/de/es/pt/fr/it/nl)

• nlp – The underlying Spacy language model to use for parsing

Methods

__init__(model=’en_core_web_sm’)
Create a Parser object that will use Spacy for parsing. It offers all the same languages that Spacy offers.
Check out: https://spacy.io/usage/models. Note that the language model needs to be downloaded first (e.g.
python -m spacy download en)

Parameters model (str) – Name of an available Spacy language model for parsing (e.g.
en/de/es/pt/fr/it/nl)

parse(corpus)
Parse the corpus. Each document will be split into sentences which are then tokenized and parsed for their
dependency graph. All parsed information is stored within the corpus object.

Parameters corpus (kindred.Corpus) – Corpus to parse

19.1.4 kindred.RelationClassifier

class kindred.RelationClassifier(classifierType=’SVM’, tfidf=True, features=None, thresh-
old=None, entityCount=2, acceptedEntityTypes=None,
model=’en_core_web_sm’)

Manages binary classifier(s) for relation classification.

Parameters

• classifierType – Which classifier is used (‘SVM’ or ‘LogisticRegression’)

• tfidf – Whether it will use tfidf for the vectorizer

• features – A list of specific features. Valid features are “entityTypes”, “unigramsBe-
tweenEntities”, “bigrams”, “dependencyPathEdges”, “dependencyPathEdgesNearEntities”

• threshold – A specific threshold to use for classification (which will then use a logistic
regression classifier)

• entityCount – Number of entities in each relation (default=2). Passed to the Candidate-
Builder (if needed)

• acceptedEntityTypes – Tuples of entity types that relations must match. None will
match allow relations of any entity types. Passed to the CandidateBuilder (if needed)

• isTrained – Whether the classifier has been trained yet. Will throw an error if predict is
called before it is trained.

44 Chapter 19. Reference

https://spacy.io/usage/models

kindred Documentation, Release =2.8.3

Methods

__init__(classifierType=’SVM’, tfidf=True, features=None, threshold=None, entityCount=2, accept-
edEntityTypes=None, model=’en_core_web_sm’)

Constructor for the RelationClassifier class

Parameters

• classifierType (str) – Which classifier to use (must be ‘SVM’ or ‘LogisticRegres-
sion’)

• tfidf (bool) – Whether to use tfidf for the vectorizer

• features (list of str) – A list of specific features. Valid features are “entity-
Types”, “unigramsBetweenEntities”, “bigrams”, “dependencyPathEdges”, “dependency-
PathEdgesNearEntities”

• threshold (float) – A specific threshold to use for classification (which will then use
a logistic regression classifier)

• entityCount (int) – Number of entities in each relation (default=2). Passed to the
CandidateBuilder (if needed)

• acceptedEntityTypes (list of tuples) – Tuples of entity types that relations
must match. None will match allow relations of any entity types. Passed to the Candidate-
Builder (if needed)

• model (str) – Name of an available Spacy language model for any parsing needed (e.g.
en/de/es/pt/fr/it/nl)

predict(corpus)
Use the relation classifier to predict new relations for a corpus. The new relations will be added to the
Corpus.

Parameters corpus (kindred.Corpus) – Corpus to make predictions on

train(corpus)
Trains the classifier using this corpus. All relations in the corpus will be used for training.

Parameters corpus (kindred.Corpus) – Corpus to use for training

19.1.5 kindred.Vectorizer

class kindred.Vectorizer(entityCount=2, featureChoice=None, tfidf=True)
Vectorizes set of candidate relations into scipy sparse matrix.

Variables

• entityCount – Number of entities in candidate relations to vectorize

• featureChoice – List of features (can be one or a set of the following: ‘entityTypes’,
‘unigramsBetweenEntities’, ‘bigrams’, ‘dependencyPathEdges’, ‘dependencyPathEdges-
NearEntities’). Set as None to use all of them.

• tfidf – Whether it will normalize n-gram based features using term frequency-inverse
document frequency

• fitted – Whether it has been fit on data first (before transforming).

• dictVectorizers – Dictionary vectorizers used for each feature

• tfidfTransformers – TFIDF transformers used for each feature (if appropriate and
selected)

19.1. Main components 45

kindred Documentation, Release =2.8.3

Methods

__init__(entityCount=2, featureChoice=None, tfidf=True)
Constructor for vectorizer class with options for what features to use and whether to normalize using
TFIDF

Parameters

• entityCount (int) – Number of entities in candidate relations to vectorize

• featureChoice (list of str) – List of features (can be one or a set of the follow-
ing: ‘entityTypes’, ‘unigramsBetweenEntities’, ‘bigrams’, ‘dependencyPathEdges’, ‘de-
pendencyPathEdgesNearEntities’). Set as None to use all of them.

• tfidf (bool) – Whether to normalize n-gram based features using term frequency-
inverse document frequency

fit_transform(candidates)
Fit the vectorizer to a list of candidate relations found in a corpus and vectorize them to generate the feature
matrix.

Parameters candidates (list of kindred.CandidateRelation) – Relation can-
didates to vectorize

Returns Feature matrix (# rows = number of candidate relations, # cols = number of features)

Return type scipy.sparse.csr.csr_matrix

getFeatureNames()
Get the names for each feature (i.e. each column in matrix generated by the fit_transform() and transform()
functions. Fit_transform() must have already been used, i.e. the vectorizer needs to have been fit to training
data.

Returns List of names for each feature (column of the vectorized data)

Return type List of str

transform(candidates)
Vectorize the candidate relations to generate the feature matrix. Must already have been fit.

Parameters candidates (list of kindred.CandidateRelation) – Relation can-
didates to vectorize

Returns Feature matrix (# rows = number of candidate relations, # cols = number of features)

Return type scipy.sparse.csr.csr_matrix

19.2 Data types

CandidateRelation Describes a candidate relation between entities (i.e.
Corpus Collection of text documents.
Document Span of text with associated tagged entities and relations

between entities.
Entity Biomedical entity with information of location in text
Relation Describes relationship between entities (including rela-

tion type and argument names if applicable).
Sentence Set of tokens for a sentence after parsing

Continued on next page

46 Chapter 19. Reference

kindred Documentation, Release =2.8.3

Table 2 – continued from previous page
Token Individual word with lemma, part-of-speech and loca-

tion in text.

19.2.1 kindred.CandidateRelation

class kindred.CandidateRelation(entities=None, knownTypesAndArgNames=None, sen-
tence=None)

Describes a candidate relation between entities (i.e. one that could exist but has not yet been predicted). Contains
information about known relation types and arg names associated with this candidate (from training data) and
also a link to the sentence containing this candidate.

Variables

• entities – List of entities in relation

• knownTypesAndArgNames – List of tuples with known relation types and argument
names associated with this candidate relation

• sentence – Parsed sentence containing the candidate relation

Methods

__init__(entities=None, knownTypesAndArgNames=None, sentence=None)
Constructor for Candidate Relation class

Parameters

• entities (list of kindred.Entity) – List of entities in relation

• knownTypesAndArgNames (list of tuples (str, list of str)) – List
of tuples with known relation types and argument names associated with this candidate
relation

• sentence (kindred.Sentence) – Parsed sentence containing the candidate relation

19.2.2 kindred.Corpus

class kindred.Corpus(text=None, loadFromSimpleTag=False)
Collection of text documents.

Variables

• documents – List of kindred.Document

• parsed – Boolean of whether it has been parsed yet. A kindred.parser can parse it.

Methods

__init__(text=None, loadFromSimpleTag=False)
Create an empty corpus with no documents, or quickly load one with a single document using optional
SimpleTag

Parameters

• text (String (with SimpleTag format XML)) – Optional SimpleTag text to
initalize a single document

19.2. Data types 47

kindred Documentation, Release =2.8.3

• loadFromSimpleTag (bool) – If text is provided, whether the text parameter is in the
SimpleTag format and will extract entities and relations accordingly

addDocument(doc)
Add a single document to the corpus

Parameters doc (kindred.Document) – Document to add

clone()
Clone the corpus

Returns Clone of the corpus

Return type kindred.Corpus

getRelations()
Get all relations in this corpus

Returns List of relations

Return type list

nfold_split(folds)
Method for splitting up the corpus multiple times and is used for an n-fold cross validation approach (as a
generator). Each iteration, the training and test set for that fold are provided.

Parameters folds (int) – Number of folds to create

Returns Tuple of training and test corpus (for iterations=folds)

Return type (kindred.Corpus,kindred.Corpus)

removeEntities()
Remove all entities in this corpus

removeRelations()
Remove all relations in this corpus

split(trainFraction)
Randomly split the corpus into two corpus for use as a training and test set

Parameters trainFraction (float) – Fraction of documents to use in training set

Returns Tuple of training and test corpus

Return type (kindred.Corpus,kindred.Corpus)

splitIntoSentences()
Create a new corpus with one document for each sentence in this corpus.

Returns Corpus with one document per sentence

Return type kindred.Corpus

19.2.3 kindred.Document

class kindred.Document(text, entities=None, relations=None, sourceFilename=None, meta-
data=None, loadFromSimpleTag=False)

Span of text with associated tagged entities and relations between entities.

Variables

• text – Text in document (plain text or SimpleTag)

• entities – Entities in document

48 Chapter 19. Reference

kindred Documentation, Release =2.8.3

• relations – Relations in document

• sourceFilename – Filename that this document came from

• metadata – IDs and other information associated with the source (e.g. PMID)

• sentences – List of sentences (kindred.Sentence) if the document has been parsed

Methods

__init__(text, entities=None, relations=None, sourceFilename=None, metadata=None, loadFrom-
SimpleTag=False)

Constructor for a Document that can take text using the SimpleTag XML format, or a set of Entities and
Relations with associated text.

Parameters

• text (str) – Text in document (plain text or SimpleTag)

• entities (list of kindred.Entity) – Entities in document

• relations (list of kindred.Relation) – Relations in document

• sourceFilename (str) – Filename that this document came from

• metadata (dict) – IDs and other information associated with the source (e.g. PMID)

• loadFromSimpleTag (bool) – Assumes the text parameter is in the SimpleTag format
and will extract entities and relations accordingly

addEntity(entity)
Add an entity to this document. If document has been parsed, it will add the entity into the sentence
structure and associated with tokens.

Parameters entity (kindred.Entity) – Entity to add

addRelation(relation)
Add a relation to this document

Parameters relation (kindred.Relation) – Relation to add

addSentence(sentence)
Add a sentence to this document

Parameters sentence (kindred.Sentence) – Sentence to add

clone()
Clones the document

Returns Clone of the document

Return type kindred.Document

removeEntities()
Remove all entities in this document

removeRelations()
Remove all relations in this document

splitIntoSentences()
Create a new corpus with one document for each sentence in this document.

Returns Corpus with one document per sentence

Return type kindred.Corpus

19.2. Data types 49

kindred Documentation, Release =2.8.3

19.2.4 kindred.Entity

class kindred.Entity(entityType, text, position, sourceEntityID=None, externalID=None, meta-
data=None)

Biomedical entity with information of location in text

Variables

• entityType – Type of the entity

• text – Text of the entity

• position – Position within the text passage at which point entity appears. Entity may be
non-contigious

• sourceEntityID – Entity ID used in source document

• externalID – ID associated with external ontology (e.g. Hugo Gene ID)

• metadata – Additional metadata about the the entity

Methods

__init__(entityType, text, position, sourceEntityID=None, externalID=None, metadata=None)
Constructor for Entity class

Parameters

• entityType (str) – Type of the entity

• text (str) – Text of the entity

• position (list of tuples of two integers) – Position within the text pas-
sage at which point entity appears. Entity may be non-contigious

• sourceEntityID (str) – Entity ID used in source document

• externalID (str) – ID associated with external ontology (e.g. Hugo Gene ID)

• metadata (dict) – Additional metadata about the the entity

clone()
Clones the entity

Returns Clone of the entity

Return type kindred.Entity

19.2.5 kindred.Relation

class kindred.Relation(relationType=None, entities=None, argNames=None, probability=None,
sourceRelationID=None)

Describes relationship between entities (including relation type and argument names if applicable).

Variables

• relationType – Type of relation

• entities – List of entities in relation

• argNames – Names of relation argument associated with each entity

• probability – Optional probability for predicted relations

50 Chapter 19. Reference

kindred Documentation, Release =2.8.3

• sourceRelationID – Relation ID used in source document

Methods

__init__(relationType=None, entities=None, argNames=None, probability=None, sourceRela-
tionID=None)

Constructor for Relation class

Parameters

• relationType (str) – Type of relation

• entities (list of kindred.Entity) – List of entities in relation

• argNames (list of str) – Names of relation argument associated with each entity

• probability (float) – Optional probability for predicted relations

• sourceRelationID (str) – Relation ID used in source document

19.2.6 kindred.Sentence

class kindred.Sentence(text, tokens, dependencies, sourceFilename=None)
Set of tokens for a sentence after parsing

Variables

• text – Text of the sentence

• tokens – List of tokens in sentence

• dependencies – List of dependencies from dependency path. Should be a list of tuples
with form (tokenindex1,tokenindex2,dependency_type)

• sourceFilename – Filename of the source document

• entityAnnotations – List of entities associated with token indices

Methods

__init__(text, tokens, dependencies, sourceFilename=None)
Constructor for Sentence class

Parameters

• text (str) – Text of the sentence

• tokens (list of kindred.Token) – List of tokens in sentence

• dependencies (list of tuples) – List of dependencies from dependency path.
Should be a list of tuples with form (tokenindex1,tokenindex2,dependency_type)

• sourceFilename (str) – Filename of the source document

addEntityAnnotation(entity, tokenIndices)
Add an entity annotation to this sentence. Associated a specific entity with the indices of specific tokens

Parameters

• entity (kindred.Entity) – Entity to add to sentence

• tokenIndices (List of ints) – List of token indices

19.2. Data types 51

kindred Documentation, Release =2.8.3

extractMinSubgraphContainingNodes(minSet)
Find the minimum subgraph of the dependency graph that contains the provided set of nodes. Useful for
finding dependency-path like structures

Parameters minSet (List of ints) – List of token indices

Returns All the nodes and edges in the minimal subgraph

Return type Tuple of nodes,edges where nodes is a list of token indices, and edges are the
associated dependency edges between those tokens

19.2.7 kindred.Token

class kindred.Token(word, lemma, partofspeech, startPos, endPos)
Individual word with lemma, part-of-speech and location in text.

Variables

• word – Unprocessed word

• lemma – Lemmatized word

• partofspeech – Part-of-speech of word

• startPos – Start position of token in document text (note: not the sentence text)

• endPos – End position of token in document text (note: not the sentence text)

Methods

__init__(word, lemma, partofspeech, startPos, endPos)
Constructor for Token class

Parameters

• word (str) – Unprocessed word

• lemma (str) – Lemmatized word

• partofspeech (str) – Part-of-speech of word

• startPos (int) – Start position of token in document text (note: not the sentence text)

• endPos (int) – End position of token in document text (note: not the sentence text)

19.3 Machine Learning Components

LogisticRegressionWithThreshold A modified Logistic Regression classifier that will filter
calls by a custom threshold, instead of the default 0.5.

MultiLabelClassifier Wrapper for a set of classifiers that can behave as a
multi-label classifier.

19.3.1 kindred.LogisticRegressionWithThreshold

class kindred.LogisticRegressionWithThreshold(threshold=0.5)
A modified Logistic Regression classifier that will filter calls by a custom threshold, instead of the default 0.5.
This allows for control of the precision-recall tradeoff, e.g. false positives versus false negatives.

52 Chapter 19. Reference

kindred Documentation, Release =2.8.3

Variables

• clf – The underlying LogisticRegression classifier

• threshold – Threshold to use, should be between 0 and 1

Methods

__init__(threshold=0.5)
Set up a Logistic Regression classifier that can use a different threshold for predictions and thereby be
more lenient (lower threshold, false positives increase, false negatives decrease) or more conservative
(higher threshold, false positives decrease, false negative increase).

Parameters threshold (float) – Threshold to use, should be between 0 and 1

fit(X, Y)
Train the classifier using the associated matrix X and classes Y. Class zero should represent no associated
class.

Parameters

• X (sparse matrix) – Training vector

• Y (matrix) – Associated class for each row of X

predict(X)
Make predictions for the class of each row in X. Class zero should represent no prediction.

Parameters X (sparse matrix) – Testing vector

Returns Predictions of classes for each row in X

Return type matrix

predict_proba(X)
Calculate probabilities for the class of each row in X. Class zero should represent no prediction. Returns a
matrix of probabilities

Parameters X (sparse matrix) – Testing vector

Returns Probabilities of classes for each row in X

Return type matrix

19.3.2 kindred.MultiLabelClassifier

class kindred.MultiLabelClassifier(classifier, **kwargs)
Wrapper for a set of classifiers that can behave as a multi-label classifier. Multi-label means that each data point
can have multiple labels (or belong to multiple classes). This is particularly relevant in text mining where two
words can belong to multiple relations. This class just creates a classifier for each label and runs then together,
concatenating the results into a nice matrix form

Methods

__init__(classifier, **kwargs)
Create a classifier that can handle multiple labels using multiple instance of the supplied classifier class.
Any additional parameters are passed onto the classifier.

Parameters classifier (class with fit/predict) – The type of classifier to use

19.3. Machine Learning Components 53

kindred Documentation, Release =2.8.3

fit(X, Y)
Fit multiple classifiers for the number of labels provided

Parameters

• X (matrix) – Training matrix (with n_samples rows and n_features columns)

• Y (matrix) – Target matrix (with n_samples rows and n_labels columns)

has_predict_proba()
Returns whether the underlying classifier has the predict_proba method

Returns Whether classifier has predict_proba method

Return type bool

predict(X)
Predict for multiple labels and return a matrix with predicted labels

Parameters X (matrix) – Testing matrix (with n_samples rows and n_features columns)

Returns Predicted binary matrix (with n_samples rows and n_labels columns)

Return type matrix

predict_proba(X)
Predict for multiple labels and return a matrix with predicted labels. Returns for the probability for the
positive class (for each label column) only.

Parameters X (matrix) – Testing matrix (with n_samples rows and n_features columns)

Returns Predicted probability matrix (with n_samples rows and n_labels columns)

Return type matrix

19.4 Data sources

bionlpst Importer for BioNLP Shared Task data
pubannotation Importer for PubAnnotation data
pubtator Importer for PubTator data

19.4.1 kindred.bionlpst

Importer for BioNLP Shared Task data

Functions

kindred.bionlpst.listTasks()
List the names of the BioNLP Shared Task datasets that can be loaded. These values can be passed to the
kindred.bionlpst.load function as the taskName argument

Returns List of valid taskNames

Return type str

kindred.bionlpst.load(taskName, ignoreEntities=[])
Download and load the corresponding corpus from the BioNLP Shared Task

Parameters

54 Chapter 19. Reference

kindred Documentation, Release =2.8.3

• taskName (str) – The name of the shared task to download (e.g. ‘BioNLP-ST-2016_BB-
event_train’). Use kindred.bionlpst.listTasks() to get a list of valid options

• ignoreEntities (list of str) – A list of any entities that should be ignored during
loading

Returns The loaded corpus

Return type kindred.Corpus

19.4.2 kindred.pubannotation

Importer for PubAnnotation data

Functions

kindred.pubannotation.load(projectName)
Download and load the corresponding corpus from the PubAnnotation resource

Parameters projectName (str) – The name of the PubAnnotation project to download

Returns The loaded corpus

Return type kindred.Corpus

19.4.3 kindred.pubtator

Importer for PubTator data

Functions

kindred.pubtator.load(pmids)
Load a set of documents with annotations from Pubmed given a list of Pubmed IDs (PMIDs)

>>> corpus = load(19894120)
>>> len(corpus.documents)
1

Parameters pmids (List of ints) – the list of Pubmed IDs

Returns a kindred corpus object

Return type kindred.Corpus

19.5 Essential functions

load Load a corpus from a variety of formats.
iterLoad Iteratively load sections of a (presumably large) corpus.
save Save a corpus to a directory
evaluate Compares the gold corpus with the test corpus and cal-

culate appropriate metrics.
Continued on next page

19.5. Essential functions 55

kindred Documentation, Release =2.8.3

Table 5 – continued from previous page
manuallyAnnotate Provides a method for basic manual annotation of a se-

ries of candidate relations.

19.5.1 kindred.load

kindred.load(dataFormat, path, ignoreEntities=[], ignoreComplexRelations=True)
Load a corpus from a variety of formats. If path is a directory, it will try to load all files of the corresponding
data type. For standoff format, it will use any associated annotations files (with suffixes .ann, .a1 or .a2)

Parameters

• dataFormat (str) – Format of the data files to load (‘stand-
off’,’biocxml’,’pubannotation’,’simpletag’)

• path (str) – Path to data. Can be directory or an individual file. Should be the txt file for
standoff.

• ignoreEntities (list) – List of entity types to ignore while loading

• ignoreComplexRelations (bool) – Whether to filter out relations where one argu-
ment is another relation (must be True as kindred doesn’t currently support complex rela-
tions)

Returns Corpus of loaded documents

Return type kindred.Corpus

19.5.2 kindred.iterLoad

kindred.iterLoad(dataFormat, path, corpusSizeCutoff=500)
Iteratively load sections of a (presumably large) corpus. This will create a generator that provides kin-
dred.Corpus objects that are subsets of the larger corpus. This should be used to lower the memory requirements
(so that the entire file doesn’t need to be loaded into memory at one time).

Parameters

• dataFormat (str) – Format of the data files to load (only ‘biocxml’ is currently sup-
ported)

• path (str) – Path to data. Can be directory or an individual file (for bioc, json or simple-
tag)

• corpusSizeCutoff (int) – Approximate maximum number of documents to be in
each corpus subset

Returns Subsets of the BioC file

Return type A kindred.Corpus generator

19.5.3 kindred.save

kindred.save(corpus, dataFormat, path)
Save a corpus to a directory

Parameters

• corpus (kindred.Corpus) – The corpus of documents to save

56 Chapter 19. Reference

kindred Documentation, Release =2.8.3

• dataFormat (str) – Format of data to save (only ‘standoff’, ‘biocxml’, ‘pubannotation’
and ‘csv’ are supported currently)

• path (str) – Path where corpus should be saved. Must be an existing directory for ‘stand-
off’.

19.5.4 kindred.evaluate

kindred.evaluate(goldCorpus, testCorpus, metric=’f1score’, display=False)
Compares the gold corpus with the test corpus and calculate appropriate metrics.

Parameters

• goldCorpus (kindred.Corpus) – The gold standard set of data

• testCorpus (kindred.Corpus) – The test set for comparison

• metric (str) – Which metric to use (precision/recall/f1score). ‘all’ will provide all three
as a tuple

• display (bool) – Whether to print (to stdout) specific statistics for each relation type

Returns The value of the corresponding metric (or metrics)

Return type float (or tuple of floats)

19.5.5 kindred.manuallyAnnotate

kindred.manuallyAnnotate(corpus, candidateRelations)
Provides a method for basic manual annotation of a series of candidate relations. Deals with a corpus, sentence
by sentence, and prompts the user to annotate each candidate relation in turn. Can be exited before completion
of the full list and the resulting annotations are split into an annotated corpus and unannotated corpus. Each
document in the new corpora are individual sentences.

Parameters

• corpus (kindred.Corpus) – Corpus of text for annotation

• candidateRelations (List of kindred.CandidateRelation) – List of
candidate relations (created using CandidateBuilder) to manually review and annotate

Returns a tuple of an annotated corpus and unannotated corpus

Return type two kindred.Corpus

19.5. Essential functions 57

kindred Documentation, Release =2.8.3

58 Chapter 19. Reference

Python Module Index

k
kindred.bionlpst, 54
kindred.pubannotation, 55
kindred.pubtator, 55

59

kindred Documentation, Release =2.8.3

60 Python Module Index

Index

Symbols
__init__() (kindred.CandidateBuilder method), 43
__init__() (kindred.CandidateRelation method), 47
__init__() (kindred.Corpus method), 47
__init__() (kindred.Document method), 49
__init__() (kindred.Entity method), 50
__init__() (kindred.EntityRecognizer method), 42
__init__() (kindred.LogisticRegressionWithThreshold

method), 53
__init__() (kindred.MultiLabelClassifier method),

53
__init__() (kindred.Parser method), 44
__init__() (kindred.Relation method), 51
__init__() (kindred.RelationClassifier method), 45
__init__() (kindred.Sentence method), 51
__init__() (kindred.Token method), 52
__init__() (kindred.Vectorizer method), 46

A
addDocument() (kindred.Corpus method), 48
addEntity() (kindred.Document method), 49
addEntityAnnotation() (kindred.Sentence

method), 51
addRelation() (kindred.Document method), 49
addSentence() (kindred.Document method), 49
annotate() (kindred.EntityRecognizer method), 42

B
build() (kindred.CandidateBuilder method), 43

C
CandidateBuilder (class in kindred), 43
CandidateRelation (class in kindred), 47
clone() (kindred.Corpus method), 48
clone() (kindred.Document method), 49
clone() (kindred.Entity method), 50
Corpus (class in kindred), 47

D
Document (class in kindred), 48

E
Entity (class in kindred), 50
EntityRecognizer (class in kindred), 41
evaluate() (in module kindred), 57
extractMinSubgraphContainingNodes()

(kindred.Sentence method), 51

F
fit() (kindred.LogisticRegressionWithThreshold

method), 53
fit() (kindred.MultiLabelClassifier method), 53
fit_transform() (kindred.Vectorizer method), 46

G
getFeatureNames() (kindred.Vectorizer method),

46
getRelations() (kindred.Corpus method), 48

H
has_predict_proba() (kin-

dred.MultiLabelClassifier method), 54

I
iterLoad() (in module kindred), 56

K
kindred.bionlpst (module), 54
kindred.pubannotation (module), 55
kindred.pubtator (module), 55

L
listTasks() (in module kindred.bionlpst), 54
load() (in module kindred), 56
load() (in module kindred.bionlpst), 54
load() (in module kindred.pubannotation), 55
load() (in module kindred.pubtator), 55
loadWordlists() (kindred.EntityRecognizer static

method), 42

61

kindred Documentation, Release =2.8.3

LogisticRegressionWithThreshold (class in
kindred), 52

M
manuallyAnnotate() (in module kindred), 57
MultiLabelClassifier (class in kindred), 53

N
nfold_split() (kindred.Corpus method), 48

P
parse() (kindred.Parser method), 44
Parser (class in kindred), 44
predict() (kindred.LogisticRegressionWithThreshold

method), 53
predict() (kindred.MultiLabelClassifier method), 54
predict() (kindred.RelationClassifier method), 45
predict_proba() (kin-

dred.LogisticRegressionWithThreshold
method), 53

predict_proba() (kindred.MultiLabelClassifier
method), 54

R
Relation (class in kindred), 50
RelationClassifier (class in kindred), 44
removeEntities() (kindred.Corpus method), 48
removeEntities() (kindred.Document method), 49
removeRelations() (kindred.Corpus method), 48
removeRelations() (kindred.Document method),

49

S
save() (in module kindred), 56
Sentence (class in kindred), 51
split() (kindred.Corpus method), 48
splitIntoSentences() (kindred.Corpus method),

48
splitIntoSentences() (kindred.Document

method), 49

T
Token (class in kindred), 52
train() (kindred.RelationClassifier method), 45
transform() (kindred.Vectorizer method), 46

V
Vectorizer (class in kindred), 45

62 Index

	File Formats
	BioNLP Shared Task format
	JSON format
	BioC XML format
	Simple Tag format
	Streaming

	Overview
	Installation
	Installing a Spacy language model

	Tutorial with a mini annotation problem
	Getting started with code
	Specific Examples
	Loading data from files
	Loading data from online resources
	Parsing
	Candidate Building
	Vectorizing

	Frequently Asked Questions
	Release Notes
	Version 2.8.0
	Version 2.7.0
	Version 2.6.0
	Version 2.5.0
	Version 2.4.0
	Version 2.3.0
	Version 2.2.0
	Version 2.1.0
	Version 2.0.0
	Version 1.1.0
	Version 1.0.0

	Citing
	Reference
	Main components
	Data types
	Machine Learning Components
	Data sources
	Essential functions

	Python Module Index
	Index

